Design Patterns

Software Development Patterns (1)

- Patterns: a means for capturing knowledge about problems and successful solutions
- Framework: partially completed software system targeted at a particular type of application
 - Reusable mini-architecture
 - Class extension and operation implementation
- Patterns versus frameworks
 - Patterns are more abstract and general
 - Patterns cannot be directly implemented in a particular software environment
 - Patterns are more primitive

Software Development Patterns (2)

- Collection of patterns: pattern catalogue, pattern language (specific domain, completeness), pattern system (classification scheme and relationships)
- Key principles underlying patterns
 - Abstraction, encapsulation, information hiding, modularisation, separation of concerns, coupling and cohesion, sufficiency-completeness and primitiveness, separation of policy and implementation, separation of interface and implementation, single point of reference, divide and conquer
- Patterns and non-functional requirements
 - Changeability, interoperability, efficiency, reliability, testability and reusability

Software Development Patterns (3)

Different kinds of patterns

- Analysis patterns: groups of concepts useful in modelling requirements
 - Example: Accountability
- Architectural patterns: describe the structure and relationships of major components of a software system
 - Example: Model-View-Controller
- Design patterns: describe the structure and interaction of smaller software components
 - Example: Singleton
- Idioms: patterns that are related to constructs in a specific programming language
 - Example: Counted pointer in C++

Software Development Patterns (5)

Software Development Patterns (6)

Software Development Patterns (7)

More patterns

- Beyond good practice Anti-patterns: practice that is demonstrably bad including possibly reworked solutions
 - Example: Mushroom Management
 - Isolate developers from users to limit requirement drift
 - Solutions: spiral process development model or involvement of domain experts in the development team
- Beyond software development
 - Architecture Alexander
 - Organisational patterns
 - Pedagogical patterns

Pattern Templates

• Style and structure of pattern description

- Name meaningful
- Problem intent
- Context preconditions
- Forces constraints
- Solution static and dynamic relationships among the components
- Other aspects: an example of use, resulting context, rationale of the chosen solution, related patterns, known uses of the pattern (rule of three), aliases, sample code and implementation details

Design Patterns (1)

- Gang of Four catalogue classification
 - Scope: class (compile time, static) or object level (runtime, dynamic)
 - Purpose: creational, structural, behavioural
 - Ease of changes by reducing coupling and maximising cohesion
 - Maintainability correcting errors
 - Extensibility inclusion of new features, removal of unwanted features
 - Restructuring increase flexibility
 - Portability executing in different environments (OS, hardware, etc.)

Design Patterns (2)

- Creational patterns (construction of instances)
 - Separate object construction from object use
 - Dynamic or static
- Singleton pattern
 - Ensures only one instance of a class is created!
 - Instead of global data, encapsulate the data into an object!
 - Use static operation getInstance()
 - Private constructor
 - Creation on demand!
 - Extension to accommodate variations

Design Patterns (3)

Design Patterns (4)

Design Patterns (5)

- Advantages
 - Controlled access to the sole instance
 - No global variables
 - The Singleton class may be subclassed
 - A variation can create a specified number of instances
- Disadvantages
 - Pattern introduces additional message passing
 - Limits the application flexibility
 - Developers are tempted to use even when inappropriate

Design Patterns (6)

- Structural patterns (organisation of classes and objects)
 - Inheritance, aggregation, composition
- Composite pattern
 - Represent whole-part hierarchies so that both whole and part objects offer the same interface to client objects
 - Same interface suggests same inheritance hierarchy polymorphic definition of operations

Design Patterns (7) MediaClip play() VideoClip SoundClip play() play() AdSequence Delegates to play() the play() addClip() operation in the components. removeClip() getChild() play() is polymorphically 1 redefined. * * VideoClip SoundClip 4-play() play()

Design Patterns (8)

Design Patterns (9)

- Behavioural patterns (problems of assigning responsibilities to class and designing algorithms)
 - Inheritance structures to spread behaviour
 - Aggregation structures to build complex behaviour
- State pattern
 - Objects exhibit different behaviour when their internal stage changes appearing as if the change class at run-time
 - Complex behaviour is broken down into simpler operation which are allocated to different objects one for each state, and the original object delegates responsibility to the appropriate state object
 - State transition responsibility either on context or shared

Design Patterns (10)

«entity»

Campaign

- -title
- campaignStartDate
- campaignFinishDate
- estimatedCost
- completionDate
- datePaid
- actualCost
- campaignOverheads
- advertCollection
- teamMembers
- + Campaign()
- + assignManager()
- + assignStaff()
- + checkCampaignBudget()
- + calcCosts() ----
- + checkStaff()
- + getDuration()
- + getTeamMembers()
- + linkToNote()
- + addAdvert()
- + listAdverts()
- + recordPayment()
- + getCampaignDetails()
- getOverheads()
- + completeCampaign()

(11)

Illustrative Structured English for the calcCosts() operation.

¥	
IF COMMISSIONED THEN	
IF ACTIVE THEN	
 IF COMPLETED THEN	
IF PAID THEN	

Design Patterns (12)

Design Patterns (13)

Design Patterns (14)

Advantages

- State behaviour is localised
- State transitions are made explicit
- State object can be shared among Context objects
- Disadvantages
 - If state objects cannot be share among Context objects there is an explosion of objects
 - Processing overheads for the creation and deletion of state objects
 - Processing overhead from the additional message

How to use design patterns

Patterns require training

- Issues to consider
 - Is there a pattern for the problem?
 - Does the pattern trigger a more acceptable solution?
 - Is there a simpler solution?
 - Is the context of the pattern consistent with that of the problem?
 - Are the consequences of using the pattern acceptable?
 - Are any constraints of the software environment in conflict with the use of the pattern?

- Pattern application procedure
 - Read the pattern to get a complete overview
 - Study the Structure, Participants and Collaborations in detail
 - Examine the Sample Code
 - Choose names for the participants that are meaningful for the application
 - Define the classes
 - Implement operations that perform the responsibilities and collaboration in the pattern
- Pattern mining (pattern writer's workshop)

Benefits and Dangers of using patterns

- Reuse of generic solutions
 - Reusable design elements
- A vocabulary for discussing the problem domain
- Patterns can limit creativity
- Patterns may lead to over-design
- Introduction of patterns has cost for the organisation
- Introduction of patterns requires a reuse culture
 - More acceptable than code reuse
- Use with care and planning